Chemistry Jamb Syllabus

By | December 2, 2017

Chemistry Jamb Syllabus

The aim of this 2017/2018 Unified Tertiary Matriculation Examination (UTME) syllabus in Chemistry is to prepare the candidates for the Board’s examination. It is designed to test their achievement of the course objectives, which are to:

(i) understand the basic principles and concepts in chemistry;
(ii) interpret scientific data relating to chemistry;
(iii) deduce the relationships between chemistry and other sciences;
(iv) apply the knowledge of chemistry to industry and everyday life.

Download Jamb Chemistry syllabus as pdf

TOPICS/CONTENTS/NOTES OBJECTIVES

1. Separation of mixtures and purification of chemical substances

(a) Pure and impure substances
(b) Boiling and melting points.
(c) Elements, compounds and mixtures
(d) Chemical and physical changes.
(e) Separation processes:
evaporation, simple and fractional distillation, sublimation, filtration, crystallization, paper and column chromatography, simple and fractional crystallization, magnetization, decantation.
Candidates should be able to:
(i) distinguish between pure and impure substances;
(ii) use boiling and melting points as criteria for purity of chemical substances;
(iii) distinguish between elements, compounds and mixture;
(iv) differentiate between chemical and physical changes;
(v) identify the properties of the components of a mixture;
(vi) specify the principle involved in each separation method.
(vii) apply the basic principle of separation processes in everyday life.

Read Also  MOUAU 2nd Batch Admission List 2017 / 2018 Released

2. Chemical combination

Stoichiometry, laws of definite and multiple proportions, law of conservation of matter, Gay Lussac’s law of combining volumes, Avogadro’s law; chemical symbols, formulae, equations and their uses, relative atomic mass
based on 12C=12, the mole concept and Avogadro’s number.
Candidates should be able to:
(i) perform simple calculations involving formulae, equations/chemical composition and the mole concept;
(ii) deduce the chemical laws from given expressions/statements/data;
(iii) interpret graphical representations related
to these laws;
(iv) deduce the stoichiometry of chemical reactions.